Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 17(10): 3537-3546, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30160483

RESUMO

Existing hydrophilic interaction liquid chromatography (HILIC) methods, considered individually, each exhibit poor chromatographic performance for a substantial fraction of polar metabolites. In addition to limiting metabolome coverage, such deficiencies also complicate automated data processing. Here we show that some of these analytical challenges can be addressed for the ZIC-pHILIC, a zwitterionic stationary phase commonly used in metabolomics, with the addition of trace levels of phosphate. Specifically, micromolar phosphate extended metabolome coverage by hundreds of credentialed features, improved peak shapes, and reduced peak-detection errors during informatic processing. Although the addition of high levels of phosphate (millimolar) as a HILIC mobile phase buffer has been explored previously, such concentrations interfere with mass spectrometric (MS) detection. We show that using phosphate as a trace additive at micromolar concentrations improves analysis by electrospray MS, increasing signal for a diverse set of polar standards. Given the small amount of phosphate needed, comparable chromatographic improvements were also achieved by direct addition of phosphate to the sample during reconstitution. Our results suggest that defects in ZIC-pHILIC performance are predominantly driven by electrostatic interactions, which can be modulated by phosphate. These findings constitute both a methodological improvement for untargeted metabolomics and an advance in our understanding of the mechanisms limiting HILIC coverage.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Fosfatos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Eletricidade Estática
2.
J Org Chem ; 83(6): 3126-3131, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29461834

RESUMO

Hypoxia-selective cytotoxins (HSCs) seek to exploit the oxygen-poor nature of tumor tissue for therapeutic gain. Typically, HSCs require activation by one-electron bioreductive enzymes such as NADPH:cytochrome P450 reductase (CYPOR). Thus, successful clinical deployment of HSCs may be facilitated by the development and implementation of diagnostic probes that detect the presence of relevant bioreductive enzymes in tumor tissue. The work described here develops analogues of the well-studied HSC tirapazamine (3-amino-1,2,4-benzotriazine 1,4-di- N-oxide, TPZ) as profluorescent substrates of the one-electron reductases involved in bioactivation of HSCs. Hypoxic metabolism of TPZ or 7-fluoro-TPZ by one-electron reductases releases inherently fluorescent mono- N-oxide metabolites that may serve as indicators, probes, markers, or stains for the detection of the enzymes involved in the bioactivation of HSCs. In particular, profluorescent compounds of this type can provide a foundation for fluorescence-based bioassays that help identify tumors responsive to HSCs.


Assuntos
Corantes Fluorescentes/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pró-Fármacos/metabolismo , Triazinas/metabolismo , Triazinas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Oxirredução , Tirapazamina
3.
Cell Rep ; 22(2): 512-522, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320744

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) occur in multiple types of human cancer. Here, we show that these mutations significantly disrupt NADPH homeostasis by consuming NADPH for 2-hydroxyglutarate (2-HG) synthesis. Cells respond to 2-HG synthesis, but not exogenous administration of 2-HG, by increasing pentose phosphate pathway (PPP) flux. We show that 2-HG production competes with reductive biosynthesis and the buffering of oxidative stress, processes that also require NADPH. IDH1 mutants have a decreased capacity to synthesize palmitate and an increased sensitivity to oxidative stress. Our results demonstrate that, even when NADPH is limiting, IDH1 mutants continue to synthesize 2-HG at the expense of other NADPH-requiring pathways that are essential for cell viability. Thus, rather than attempting to decrease 2-HG synthesis in the clinic, the consumption of NADPH by mutant IDH1 may be exploited as a metabolic weakness that sensitizes tumor cells to ionizing radiation, a commonly used anti-cancer therapy.


Assuntos
NADP/metabolismo , Estresse Oxidativo/genética , Via de Pentose Fosfato/genética , Humanos
4.
Anal Bioanal Chem ; 410(4): 1287-1297, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29256075

RESUMO

Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.


Assuntos
Cromatografia de Fase Reversa/métodos , Metaboloma , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Padrões de Referência , Solubilidade
5.
Anal Chem ; 89(19): 10397-10406, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28914531

RESUMO

When using liquid chromatography/mass spectrometry (LC/MS) to perform untargeted metabolomics, it is now routine to detect tens of thousands of features from biological samples. Poor understanding of the data, however, has complicated interpretation and masked the number of unique metabolites actually being measured in an experiment. Here we place an upper bound on the number of unique metabolites detected in Escherichia coli samples analyzed with one untargeted metabolomics method. We first group multiple features arising from the same analyte, which we call "degenerate features", using a context-driven annotation approach. Surprisingly, this analysis revealed thousands of previously unreported degeneracies that reduced the number of unique analytes to ∼2961. We then applied an orthogonal approach to remove nonbiological features from the data using the 13C-based credentialing technology. This further reduced the number of unique analytes to less than 1000. Our 90% reduction in data is 5-fold greater than previously published studies. On the basis of the results, we propose an alternative approach to untargeted metabolomics that relies on thoroughly annotated reference data sets. To this end, we introduce the creDBle database ( http://creDBle.wustl.edu ), which contains accurate mass, retention time, and MS/MS fragmentation data as well as annotations of all credentialed features.


Assuntos
Bases de Dados Factuais , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Metaboloma , Espectrometria de Massas em Tandem
6.
Nat Chem Biol ; 12(11): 937-943, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27618187

RESUMO

It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. It is generally assumed, however, that within the fermenting cell itself, lactate is produced to replenish NAD+ and then is secreted. Here we explore the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. Using high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not of isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells.


Assuntos
Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Estrutura Molecular
7.
Anal Chem ; 88(18): 9037-46, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27513885

RESUMO

Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Software , Algoritmos , Ácido Glutâmico/química , NAD/química
8.
Anal Chem ; 88(5): 2538-42, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26837423

RESUMO

Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.


Assuntos
Processamento Eletrônico de Dados/métodos , Metaboloma , Metabolômica/métodos , Limite de Detecção , Espectrometria de Massas
9.
Curr Opin Chem Biol ; 30: 87-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26673825

RESUMO

Global profiling of metabolites in biological samples by liquid chromatography/mass spectrometry results in datasets too large to evaluate manually. Fortunately, a variety of software programs are now available to automate the data analysis. Selection of the appropriate processing solution is dependent upon experimental design. Most metabolomic studies a decade ago had a relatively simple experimental design in which the intensities of compounds were compared between only two sample groups. More recently, however, increasingly sophisticated applications have been pursued. Examples include comparing compound intensities between multiple sample groups and unbiasedly tracking the fate of specific isotopic labels. The latter types of applications have necessitated the development of new software programs, which have introduced additional functionalities that facilitate data analysis. The objective of this review is to provide an overview of the freely available bioinformatic solutions that are either based upon or are compatible with the algorithms in XCMS, which we broadly refer to here as the 'XCMS family' of software. These include CAMERA, credentialing, Warpgroup, metaXCMS, X(13)CMS, and XCMS Online. Together, these informatic technologies can accommodate most cutting-edge metabolomic applications and offer unique advantages when compared to the original XCMS program.


Assuntos
Metabolômica/métodos , Software , Artefatos , Internet , Anotação de Sequência Molecular
10.
Bioinformatics ; 32(2): 268-75, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26424859

RESUMO

MOTIVATION: Current informatic techniques for processing raw chromatography/mass spectrometry data break down under several common, non-ideal conditions. Importantly, hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) produces data which are especially challenging to process. We identify three critical points of failure in current informatic workflows: compound specific drift, integration region variance, and naive missing value imputation. We implement the Warpgroup algorithm to address these challenges. RESULTS: Warpgroup adds peak subregion detection, consensus integration bound detection, and intelligent missing value imputation steps to the conventional informatic workflow. When compared with the conventional workflow, Warpgroup made major improvements to the processed data. The coefficient of variation for peaks detected in replicate injections of a complex Escherichia Coli extract were halved (a reduction of 19%). Integration regions across samples were much more robust. Additionally, many signals lost by the conventional workflow were 'rescued' by the Warpgroup refinement, thereby resulting in greater analyte coverage in the processed data. AVAILABILITY AND: I: MPLEMENTATION: Warpgroup is an open source R package available on GitHub at github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS compatibility wrappers for ease of use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: nathaniel.mahieu@wustl.edu or gjpattij@wustl.edu.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Processamento Eletrônico de Dados , Metabolômica/métodos , Cromatografia Líquida/métodos , Consenso , Bases de Dados de Compostos Químicos , Humanos , Espectrometria de Massas/métodos
11.
Cancer Metab ; 3: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629338

RESUMO

BACKGROUND: Two-hydroxyglutarate (2HG) is present at low concentrations in healthy mammalian cells as both an L and D enantiomer. Both the L and D enantiomers have been implicated in regulating cellular physiology by mechanisms that are only partially characterized. In multiple human cancers, the D enantiomer accumulates due to gain-of-function mutations in the enzyme isocitrate dehydrogenase (IDH) and has been hypothesized to drive malignancy through mechanisms that remain incompletely understood. While much attention has been dedicated to identifying the route of 2HG synthesis, the metabolic fate of 2HG has not been studied in detail. Yet the metabolism of 2HG may have important mechanistic consequences influencing cell function and cancer pathogenesis, such as modulating redox potential or producing unknown products with unique modes of action. RESULTS: By applying our isotope-based metabolomic platform, we unbiasedly and comprehensively screened for products of L- and D-2HG in HCT116 colorectal carcinoma cells harboring a mutation in IDH1. After incubating HCT116 cells in uniformly (13)C-labeled 2HG for 24 h, we used liquid chromatography/mass spectrometry to track the labeled carbons in small molecules. Strikingly, we did not identify any products of 2HG metabolism from the thousands of metabolomic features that we screened. Consistent with these results, we did not detect any significant changes in the labeling patterns of tricarboxylic acid cycle metabolites from wild type or IDH1 mutant cells cultured in (13)C-labeled glucose upon the addition of L, D, or racemic mixtures of 2HG. A more sensitive, targeted analysis revealed trace levels of isotopic enrichment (<1 %) in some central carbon metabolites from (13)C-labeled 2HG. However, we found that cells do not deplete 2HG from the media at levels above our detection limit over a 48 h time period. CONCLUSIONS: Taken together, we conclude that 2HG carbon is not readily transformed in the HCT116 cell line. These data indicate that the phenotypic alterations induced by 2HG are not a result of its metabolic products.

12.
Anal Chem ; 87(2): 884-91, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25496351

RESUMO

An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.


Assuntos
Biologia Computacional , Desulfovibrio vulgaris/metabolismo , Processamento Eletrônico de Dados/métodos , Metabolômica/métodos , Cromatografia Líquida/métodos , Bases de Dados Factuais , Desulfovibrio vulgaris/crescimento & desenvolvimento , Software , Espectrometria de Massas em Tandem/métodos
13.
Anal Chem ; 86(19): 9358-61, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25166490

RESUMO

The METLIN metabolite database has become one of the most widely used resources in metabolomics for making metabolite identifications. However, METLIN is not designed to identify metabolites that have been isotopically labeled. As a result, unbiasedly tracking the transformation of labeled metabolites with isotope-based metabolomics is a challenge. Here, we introduce a new database, called isoMETLIN (http://isometlin.scripps.edu/), that has been developed specifically to identify metabolites incorporating isotopic labels. isoMETLIN enables users to search all computed isotopologues derived from METLIN on the basis of mass-to-charge values and specified isotopes of interest, such as (13)C or (15)N. Additionally, isoMETLIN contains experimental MS/MS data on hundreds of isotopomers. These data assist in localizing the position of isotopic labels within a metabolite. From these experimental MS/MS isotopomer spectra, precursor atoms can be mapped to fragments. The MS/MS spectra of additional isotopomers can then be computationally generated and included within isoMETLIN. Given that isobaric isotopomers cannot be separated chromatographically or by mass but are likely to occur simultaneously in a biological system, we have also implemented a spectral-mixing function in isoMETLIN. This functionality allows users to combine MS/MS spectra from various isotopomers in different ratios to obtain a theoretical MS/MS spectrum that matches the MS/MS spectrum from a biological sample. Thus, by searching MS and MS/MS experimental data, isoMETLIN facilitates the identification of isotopologues as well as isotopomers from biological samples and provides a platform to drive the next generation of isotope-based metabolomic studies.


Assuntos
Bases de Dados Factuais , Metabolômica/métodos , Software , Isótopos de Carbono , Cromatografia Líquida , Isótopos de Nitrogênio , Espectrometria de Massas em Tandem
14.
Anal Chem ; 86(19): 9583-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25160088

RESUMO

The aim of untargeted metabolomics is to profile as many metabolites as possible, yet a major challenge is comparing experimental method performance on the basis of metabolome coverage. To date, most published approaches have compared experimental methods by counting the total number of features detected. Due to artifactual interference, however, this number is highly variable and therefore is a poor metric for comparing metabolomic methods. Here we introduce an alternative approach to benchmarking metabolome coverage which relies on mixed Escherichia coli extracts from cells cultured in regular and (13)C-enriched media. After mass spectrometry-based metabolomic analysis of these extracts, we "credential" features arising from E. coli metabolites on the basis of isotope spacing and intensity. This credentialing platform enables us to accurately compare the number of nonartifactual features yielded by different experimental approaches. We highlight the value of our platform by reoptimizing a published untargeted metabolomic method for XCMS data processing. Compared to the published parameters, the new XCMS parameters decrease the total number of features by 15% (a reduction in noise features) while increasing the number of true metabolites detected and grouped by 20%. Our credentialing platform relies on easily generated E. coli samples and a simple software algorithm that is freely available on our laboratory Web site (http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with reversed-phase and hydrophilic interaction liquid chromatography as well as Agilent, Thermo Scientific, AB SCIEX, and LECO mass spectrometers. Thus, the credentialing platform can readily be applied by any laboratory to optimize their untargeted metabolomic pipeline for metabolite extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing.


Assuntos
Metabolômica , Cromatografia Líquida , Escherichia coli/química , Espectrometria de Massas em Tandem
15.
Biochemistry ; 53(29): 4755-7, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25010499

RESUMO

It is well established that most cancer cells take up an increased amount of glucose relative to that taken up by normal differentiated cells. The majority of this glucose carbon is secreted from the cell as lactate. The fate of the remaining glucose carbon, however, has not been well-characterized. Here we apply a novel combination of metabolomic technologies to track uniformly labeled glucose in HeLa cancer cells. We provide a list of specific intracellular metabolites that become enriched after being labeled for 48 h and quantitate the fraction of consumed glucose that ends up in proteins, peptides, sugars/glycerol, and lipids.


Assuntos
Glucose/metabolismo , Metaboloma , Cromatografia Líquida , Ciclo do Ácido Cítrico , Células HeLa , Humanos , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Via de Pentose Fosfato
16.
Curr Opin Biotechnol ; 28: 143-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816495

RESUMO

Liquid chromatography/mass spectrometry-based untargeted metabolomics is now an established experimental approach that is being broadly applied by many laboratories worldwide. Interpreting untargeted metabolomic data, however, remains a challenge and limits the translation of results into biologically relevant conclusions. Here we review emerging technologies that can be applied after untargeted profiling to extend biological interpretation of metabolomic data. These technologies include advances in bioinformatic software that enable identification of isotopes and adducts, comprehensive pathway mapping, deconvolution of MS(2) data, and tracking of isotopically labeled compounds. There are also opportunities to gain additional biological insight by complementing the metabolomic analysis of homogenized samples with recently developed technologies for metabolite imaging of intact tissues. To maximize the value of these emerging technologies, a unified workflow is discussed that builds on the traditional untargeted metabolomic pipeline. Particularly when integrated together, the combination of the advances highlighted in this review helps transform lists of masses and fold changes characteristic of untargeted profiling results into structures, absolute concentrations, pathway fluxes, and localization patterns that are typically needed to understand biology.


Assuntos
Metaboloma , Metabolômica/tendências , Animais , Cromatografia Líquida , Biologia Computacional , Marcação por Isótopo , Espectrometria de Massas , Software
17.
Anal Chem ; 85(16): 7713-9, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23829391

RESUMO

Mass spectrometry-based metabolomics relies on MS(2) data for structural characterization of metabolites. To obtain the high-quality MS(2) data necessary to support metabolite identifications, ions of interest must be purely isolated for fragmentation. Here, we show that metabolomic MS(2) data are frequently characterized by contaminating ions that prevent structural identification. Although using narrow-isolation windows can minimize contaminating MS(2) fragments, even narrow windows are not always selective enough, and they can complicate data analysis by removing isotopic patterns from MS(2) spectra. Moreover, narrow windows can significantly reduce sensitivity. In this work, we introduce a novel, two-part approach for performing metabolomic identifications that addresses these issues. First, we collect MS(2) scans with less stringent isolation settings to obtain improved sensitivity at the expense of specificity. Then, by evaluating MS(2) fragment intensities as a function of retention time and precursor mass targeted for MS(2) analysis, we obtain deconvolved MS(2) spectra that are consistent with pure standards and can therefore be used for metabolite identification. The value of our approach is highlighted with metabolic extracts from brain, liver, astrocytes, as well as nerve tissue, and performance is evaluated by using pure metabolite standards in combination with simulations based on raw MS(2) data from the METLIN metabolite database. A R package implementing the algorithms used in our workflow is available on our laboratory website ( http://pattilab.wustl.edu/decoms2.php ).


Assuntos
Metabolômica , Linhagem Celular Transformada , Cromatografia Líquida , Humanos , Espectrometria de Massas , Conformação Molecular
18.
J Neurosci ; 33(7): 2732-53, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407934

RESUMO

The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Perfilação da Expressão Gênica/métodos , Modificação Traducional de Proteínas/genética , Modificação Traducional de Proteínas/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Animais , Comportamento Animal/fisiologia , Proteínas CELF , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Mutação/genética , Mutação/fisiologia , Neurotransmissores/metabolismo , Polimorfismo Genético , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Ribossomos/genética , Ribossomos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Olfato/fisiologia , Comportamento Social , Vocalização Animal/fisiologia
19.
Anal Chem ; 85(2): 798-804, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23206250

RESUMO

Global metabolomics describes the comprehensive analysis of small molecules in a biological system without bias. With mass spectrometry-based methods, global metabolomic data sets typically comprise thousands of peaks, each of which is associated with a mass-to-charge ratio, retention time, fold change, p-value, and relative intensity. Although several visualization schemes have been used for metabolomic data, most commonly used representations exclude important data dimensions and therefore limit interpretation of global data sets. Given that metabolite identification through tandem mass spectrometry data acquisition is a time-limiting step of the untargeted metabolomic workflow, simultaneous visualization of these parameters from large sets of data could facilitate compound identification and data interpretation. Here, we present such a visualization scheme of global metabolomic data using a so-called "cloud plot" to represent multidimensional data from septic mice. While much attention has been dedicated to lipid compounds as potential biomarkers for sepsis, the cloud plot shows that alterations in hydrophilic metabolites may provide an early signature of the disease prior to the onset of clinical symptoms. The cloud plot is an effective representation of global mass spectrometry-based metabolomic data, and we describe how to extract it as standard output from our XCMS metabolomic software.


Assuntos
Sepse/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Lipídeos/sangue , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Sepse/sangue , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...